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ABSTRACT

The material derivative concept of continuum mechanics and an adjoint
variable method of design sensitivity analysis are used to relate
variations in structural shape to measures of structural performance. A
domain method of shape design sensitivity analysis is used to best utilize
the basic character of the finite element method that gives accurate
information not on the boundary but in the domain. Implementation of
shape design sensitivity analysis using finite element computer codes is
discussed. Recent numerical results are used to demonstrate accuracy that
can be obtained using the method. Result of design sensitivity analysis
is used to carry out design optimization of a built-up structure.

1. INTRODUCTION

A substantial literature has been developed in the field of shape
design sensitivity analysis and optimization of structural components
[1-3] over the past few years. Contributions to this field have been made
using two fundamentally different approaches to structural modeling and
analysis. The first approach uses a discretized structural model, based
on finite element analysis, and proceeds to carry out shape design
sensitivity analysis by controlling finite element node movement and
differentiating the algebraic finite element equations [4-6]. The second
approach to shape design sensitivity analysis uses an elasticity model of
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the structure and the material derivative method of continuum mechanics to
account for changes in shape of the structure [7-13]. Using this
approach, expressions for design sensitivity in terms of domain shape
change are derived in the continuous setting and evaluated using any
available method of structural analysis; e.g., finite element analysis,
boundary element analysis, photoelasticity, etc.

Shape design sensitivity analysis for several structural components
has been treated in Refs. 2, 9, and 10 where sensitivity information is
explicitly expressed as integrals, using integration by parts and boundary
and/or interface conditions to obtain identities for transformation of
domain integrals to boundary integrals. Numerical calculation of design
sensitivity information in terms of the resulting boundary integrals thus
requires stresses, strains, and/or normal derivatives of state and adjoint
variables on the boundary. However, when the finite element method is
used for analysis of built-up structures, the accuracy of numerical
results for state and adjoint variables on interface boundaries may not be
good [14].

To overcome this difficulty, a domain method of shape design
sensitivity analysis is developed in Ref. 15, in which design sensitivity
information is expressed as domain integrals, instead of boundary
integrals (boundary method). The domain and the boundary methods are
analytically equivalent. However, when one uses an approximate numerical
method such as finite element analysis, the resulting design sensitivity
approximations may give quite different numerical values. Moreover, the
domain method offers a remarkable simplification in derivation of shape
design sensitivity formulas for built-up structures since interface
conditions are not required to obtain shape design sensitivity formulas.
In the domain method, numerical evaluation of the sensitivity information
is more complicated and inefficient than the result of the boundary
method, since the domain method requires integration over the entire
domain, whereas the boundary method requires integration over only the
variable boundary. To alleviate this problem, a boundary layer of finite
elements that vary during the perturbation of the shape of a structural
component is introduced in Ref. 16.

In shape design problems, nodal points of the finite element model
move as shape changes. In Ref. 17, a method of automatic regridding to
account for shape change has been developed using a velocity field in the
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domain that obeys the governing deformation equations of the elastic
solid.

Using the domain method of Ref. 15 and results of conventional
(sizing) design sensitivity analysis theory of Ref. 2, a design component
method is developed in Ref. 18 for unified and systematic organization of
design sensitivity analysis of built-up structures, with both conventional
and shape design variables. That is, conventional and shape design
sensitivity formulas for each standard component type can be derived. The
result is standard formulas that can be used for design sensitivity
analysis of built-up structures, by simply adding contributions from each
component. The method gives a systematic organization of computations for
design sensitivity analysis that is similar to the way in which
computations are organized within a finite element code.

A numerical method has been developed in Ref. 19 to implement the
results of the design component method, using the versatility and
convenience of existing finite element codes. It is shown in Ref. 19 that
calculations can be carried out outside existing finite element codes,
using postprocessing data only., Thus, design sensitivity analysis
software does not have to be imbedded in an existing finite element code.

The purpose of this paper is to combine these developments to present
a unified method of shape design sensitivity analysis and numerical
implementation of the method with existing finite element codes. Even
though only static response is considered here, the method is also
applicable for eigenvalue design sensitivity analysis as shown in Ref. 2.

The design sensitivity analysis method presented here supports
optimality criteria method for structural optimization and serves as the
foundation for iterative methods of structural optimization using
nonlinear programming. At a more practical level, the design sensitivity
analysis method can be used to develop an interactive computer-aided
design system [2]. A large scale built-up structure is optimized to
demonstrate capability of the method.

2. VARIATIONAL FORM OF GOVERNING EQUATIONS

While a substantial library of structural components must be
considered to implement the design sensitivity analysis for broad classes
of applications, the component library to be considered in this paper is



limited to truss, beam, plate, plane elastic solid, and three dimensional
solid components. Even though this is a somewhat restricted class of
components, it is general enough that significant applications can be made
and practicality of the method can be demonstrated.

In the actual formulation, the truss and beam components, including
both bending and torsion of the beam, are incorporated into a single
component, Similarly, plate and plane elastic solid components are
combined as a single component. To be more specific, the following
formation of beam/truss, three dimensional elastic solid, and plate/plane
elastic solid components are employed:

A. BEAM/TRUSS
Consider the beam/truss component of Fig. 2.1. The energy bilinear
form (internal virtual work) [2] of the component is

2 £
= 2.2 =2 -
El wxxwxxdx + é El wxxwxxdx + é GJexexdx

/
0

+ [ hEv_v_dx [2.1]
0

h(x)

(x) 8 (x)
w2(x)

wl(x) x= 1

Figure 2.1 Beam/Truss Component

where wl, wz, 8, and v are two orthogonal lateral displacements, angle of
2 T

» 6, v]'.
Throughout this paper, an overbar; e.g., z, denotes a virtual displace-
ment. Subscript x in Eq. 2.1 denotes derivative with respect to x. In

twist, and axial displacement, respectively, and z = [wl, W

Eq. 2.1, E, G, Il, 12, J, and h are Young's modulus, shear modulus, two
moments of inertia, torsional moment of inertia, and cross-sectional area
of the component, respectively. The conventional design variable is u =
h(x) and the shape design variable is the length of the domain @ = [0,2].
The load linear form (external virtual work) [2] of the component is
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L (z) = [ qwdx + [ q°wdx + [ rédx + [ fvdx [2.2]
U, 0 0 0 0

where ql, q2, r, and f are two orthogonal lateral loads, twisting moment,

and axial load, respectively, as shown in Fig. 2.2 [2]. If there are
point loads, a Dirac delta measure can be used for ql, qz, r, and f in
Eq. 2.2 [2].

q2(x)
f(X) ‘ pa

N

H
A4
b d

q'(x) r(x)
Figure 2.2 External Loads For Beam/Truss

The variational equation of the beam/truss component is [2]

u,Q(z,z)= zu’n(_i), for all Z € 2 [2.3]
where Z is the space of kinematically admissible displacement., That

is, Z C:[H2(0,9.)]2 X [Hl(O,g)]2 and elements of Z satisfy kinematic
boundary conditions where H'(0,%) is the Sobolev space of order i [2]. As
possible boundary conditions, the beam/truss component can be simply
supported, clamped, cantilevered, or clamped-simply supported. It is
shown in Ref. 2 that the variational Eq. 2.3 is applicable for all
boundary conditions mentioned.

B. THREE DIMENSIONAL ELASTIC SOLID

Consider the three dimensional elastic solid of Fig. 2.3. For plane
elastic solid, results of the three dimensional elastic solid may be
reduced.

The strain tensor is defined as

e(z) = 3 (z;. +2)), 1,0=123, xeaq [2.4]



Figure 2.3 Three Dimensional Elastic Solid

where z = [zl, zz, 23]T is displacement field and subscript i, i = 1,2,3,
denotes derivatives with respect to variable x;. The stress-strain
relation (generalized Hooke's Law) is
i 3 ke ke .
o¥(z) = § ¢ e (z), i,i.,k,2=1,2,3, xE [2.5]

where C i§.the elastic modulus tensor, satisfying symmetry relations
clike _ cdikL g Ik o 13K 4 5 v g =1,2,3. The energy bilinear
form [2] of the three dimensional elastic solid is

3 . .
a (2,2) = [[f. [ § o 2)e'd(Z)]de [2.6]
u,9 ol, L
i,j=1
Even though shape design variable, which is the shape of the domain @, is
the only design variable in this case, subscript u is left for general
treatment. The load linear form [2] of the three dimensional elastic
solid is



T2 ar [2.7]
1

e~ w

i=i
2,,0@ = g [Z f'z Jda+ [[, [
=1 r- i
where ro, rl, and r2 are clamped, traction free, and loaded boundaries,
respectively, f = [fl, f2, f3]T is the body force, and T = [Tl, TZ, T3]T
is the traction force.

The variational equation of the three dimensional elastic solid is [2]

a Q(z,z) = zu’g(z), for all z € Z [2.8]

where Z is the space of kinematically admissible displacements; i.e.,
z={zeW@P:z2'(x)=0,i=1,2,3, xei} [2.9]

For plane elasticity problems in which either all components of stress
in the x3-direction are zero or all components of strain in the x3-
direction are zero, Eq. 2.8 remains valid, with limits of summation
running from 1 to 2 and an appropriate modification of the generalized
Hooke's Law of Eq. 2.5.

C. PLATE/PLANE LEASTIC SOLID

Consider the plate/plane elastic solid component of Fig. 2.4. The
energy bilinear form [2] of the component is

au’Q(z;E) = f£ ﬁ(t)[(w11 + VWZZFFII + (w22 + vwll)WéZ

2 .. ..
wiWplde + [f [ ] o' (v)e'd (V) Jde [2.10]
Q i,j=1

+ 2(1-v)

where z = [w, vl, vz]T is the displacement field. In Eq. 2.10, 6(t) =
Et3/[12(1-v2)], v, and t are flexural rigidity, Poisson's ratio, and
thickness of the component, respectively. Also, oIJ(v) and e‘J(v) are
stress and strain due to an in-plane displacement field v = [vl, v2] ’
respectively. For this component, the conventional design variable is u =
t(x) and the shape design variable is the shape of the domain Q2. The load

linear form [2] of the component is
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Figure 2.4 Plate/Plane Elastic Solid Component

T dr [2.11]
1

[

i

ne-1M
[ e R a b

‘u,nm = f{z qwda + [sjz [ fiVi]dQ + {2

i=1

where q, f = [fl, f2]T and T = [Tl, Tz]T are lateral load, body force, and
traction force, respectively, as shown in Fig. 2.5. As in the beam/truss
component, if there are point loads, a Dirac delta measure [2] can be

used,

T
T(x)= [T'(x),Tz(x)]

\m“

Figure 2.5 External Loads For Plate/Plane Elastic Solid



The variational equation of the plate/plane elastic solid component is

[2]

z,z) = 2. (Z), for all z e 2 [2.12]

3, ,al u,ql

where Z c:Hz(Q) X [Hl(ﬂ)]2 and elements of Z satisfy kinematic boundary
conditions. For plane leastic solid, kinematic boundary condition is

Vi) =0, i=1,2, xer [2.13]

For plate, the boundary can be clamped, simply supported, or free edge.
While the calculation may not be as simple as in the case of beam, the
variational Eq. 2.12 is valid for all boundary conditions considered [2].

Note that Egqs. 2.3, 2.8, and 2.12, the variational equations for
different structural components are all in the same form.

3. MATERIAL DERIVATIVE FOR SHAPE DESIGN SENSITIVITY ANALYSIS

The first step in shape design sensitivity analysis is development of
relationships between a variation in shape of a structural component and
the resulting variations in functionals that may arise in the shape design
problems. Since the shape of domain a structural component occupies is
treated as the design variable, it is convenient to think of Q as a
continuous medium and utilize the material derivative idea of continuum
mechanics. In this section, the definition of material derivative is
introduced and several material derivative formulas that will be used in
later sections are derived.

Consider a domain Q in one, two, or three dimensions, shown
schematically in Fig. 3.1. Suppose that only one parameter 1 defines the
transformation T, as shown in Fig. 3.1. The
mapping T : x » xT(x) , X € Q, is given by

c T(x,T) (3.1
= T(a,7) '

x
"

Le)
{1}



Figure 3.1 One Parameter Family of Mappings

The process of deforming Q to Q. by the mapping of Eq. 3.1 may be
viewed as a dynamic process of deforming a continuum, with t playing the
role of time. At the initial time v = 0, the domain is Q. Trajectories of
points x &€ Q, beginning at t = 0, can now be followed. The initial point

moves to X T(x,t). Thinking of 1 as time, a design velocity can be

defined as
dx

T _ aT(x,1)
v(xr’T) dt 9T

[3.2]

In a neighborhood of t = 0, under reasonable regularity hypotheses

(21,

T(x,7) = T(x,0) + © 2L (x,0) + 0(%)

x + V(x,0) + 0(7%)

Ignoring higher order terms,
T(x,t) = x + TV(x) [3.3]

where V(x) = V{x,0). In this paper, only the transformation T of Eq. 3.2
will be considered, the geometry of which is shown in Fig. 3.2.
Variations of the domain @ by the design velocity field V(x) are denoted
as @_ = T(Q,t) and the boundary of Q is denoted as r.. Henceforth in the
paper, the term “design velocity" will be referred to simply as
"velocity".

Let Q be a Ck-regular open set; i.e., its boundary T is closed and
bounded and can be locally represented by a cK-function. Let V(x) € R"
in Eq. 3.2 be a vector defined on a neighborhood U of the closure @ of @



Figure 3.2 Variation of Domain

and V(x) and its derivatives up to order k > 1 be continuous. With these
hypotheses, it has been shown [20] that for small T, T(x,t) is a
homeomorphism (a one-to-one, continuous map with a continuous inverse)
from U to U_ = T(U,t) and that T(x,t) and its inverse mapping T'l(xr,r)
have Ck-regularity and Q_ has Ck-regularity.

Suppose zt(xr) is a smooth solution of the elasiticity equations.

Then the mapping zT(xT) zT(x + 1V(x)) is defined on @ and z_(x_) depends
on T in two ways. First, it is the solution of the boundary-value problem
on QT. Second, it is evaluated at a point X, that moves with 1. The
pointwise material derivative (which is shown to exist in Ref. 2) at

X € Q is defined as

z (x + W(x)) - z(x)

2(x) =z (xrev(x))] o = o0 - [3.4]

If z_ has a regular extension to a neighborhood UT of ﬁT, then

z(x) = z'(x) + VzTV(x) [3.5]
where

iy 2 Mim 2K z(x? [3.6]

0 T

is the partial derivative of z.



One attractive feature of the partial derivative is that, with
reasonable smoothness assumptions, it commutes with the derivatives with
respect to x; [2]; i.e.,

32 yo . 3 . .
('—E—) —sx_]'- (Z ) s 17 19293 [3.7]

A pair of technical material derivative formulas that are used
throughout the remainder of the paper are summarized in this section.
Their proofs are presented in Ref. 2.

Lemma 3.1: Let ¥ be a domain functional, defined as an integral over
2,

v, = IIQT f(x)) da_ [3.8]
where fT is a regular function defined on QT. If @ has Ck-regularity,
then the material derivative of wl at @ is

¥} = [fg £ (x)da + [ f(x) (V) dr [3.9]
or, equivalently,
W= g [F () + 9 () TV(x) + F(x)div V(x)]da [3.10]

It is interesting and important to note that only the normal component
(VTn) of the boundary velocity appearing in Eq. 3.9 is needed to account
for the effect of domain variation. In fact, it is shown by Theorem 3.5.2
of Ref, 2 that if a general domain functional ¢ has a gradient at Q and
if Q has Ck+1-regularity, then only the normal component (VTn) of the
velocity field on the boundary is needed for derivative calculations.

In contrast to Eq. 3.9, use of the mathematically equivalent result
given in Eq. 3.10 requires that the velocity field V(x) be defined
throughout the domain Q. Of course, it must be consistent with
(VTn) on T. Nevertheless, there are an infinite number of velocity fields
that satisfy this condition, for each of which the result of Eqs. 3.9 and
3.10 must be the same.

Next, consider a functional defined as an integration over Fo»



¥y = IPT g (x.) dr_ [3.11]

Lemma 3.2: Suppose 9. in Eq. 3.11 is a regular function defined
on FT. If o is ck+l regular, the material derivative of wz is

vp = [p [a'(x) + (vg'n + H g(x)) (vTn)] ar [3.12]

2

where H is the curvatue of I' in R® and twice the mean curvature in R3.

4. ADJOINT VARIABLE FORMULATION OF SHAPE DESIGN SENSITIVITY ANALYSIS

As seen in Section 3, the static response of a structure depends on
the shape of the domain. Existence of the material derivative 2, which is
proved in Ref. 2, and material derivative formulas presented in Section 3
are used in this section to derive an adjoint variable method for design
sensitivity analysis of several functionals. Since the finite element
method is used for numerical analysis of the structural systems in this
paper, only the domain method of shape design sensitivity analysis is
presented in this section.

The variational equations of several structural components of Egs.
2.3, 2.8, and 2.12 on a deformed domain, is of the form

3, g (z_, z) = jfn c(zT, ZT) da_
T

_ T- T- : - -
= ijTf szQT + frzT szI‘T = 2U’QT(ZT), for all z_€ ZT
T

[4.1]

where ZT is the space of kinematically admissible displacements on Q. and
c(e,*) is a bilinear mapping that is defined by the integrand of Egqs. 2.1,
2.6, and 2.10.

Taking the material derivative of both sides of Eq. 4.1, using Egs.
3.10 and 3.11 and noting that the partial derivatives with respect
to t and x commute,

au’v(z,i) ra. (z,2) = lu,v(i), for all ze 7 [4.2]

[a, o(z:2)]



where, using Eq. 3.5,

[y o(z,2)] = IIQ[C(Z.E') + c(2',2) + ve(z,2)'V + c(2,Z)div V] da

TV,2) + ve(z, D)V

= Jlgle(z,E - VW) + (3 - w2
+ ¢(z,z)div V] do [4.3]

and

1
g, (3 = [1g (€72 + 9(FT2) v + fTzdiv v]da

+f , [T+ (9(75)Tn + wT2)(vTn)Jar
T

= [l (672 - ") + 9(eT2)W + Tzaiv V]de

v, (TG - ™)+ (T« wTE) ) ar (4.4]
r

The fact that the partial derivatives of the coefficients, which depend on
cross-sectional area and thickness, in the bilinear mapping c(+,+) are
zero has been used in Eq. 4.3 and f' = T' = 0 has been used in Eq. 4.4.
For boundary variations, it is supposed that the boundary T = rolJ FllJ r2

is varied, except that the curve arz that bounds the loaded surface FZ is

fixed for three dimensional elastic solid, so the velocity field V at ar2

is zero. For the case in which ar2

is not fixed, variation of the
traction term in Eq. 4.1 (given as an integral over r2) gives an
additional term that was not discussed in lemmas. For this case, the
interested reader is referred to Ref. 21. For plane elastic solid
component case, these additional terms will be given in Section 5.

For ET, select Et(x + tV(x)) = z(x); i.e., choose z as constant on the
line X, =X+ ©V(x). Then, since Hm(Q) is preserved by T(x,t)
(homeomorphism property noted in Section 3), if z is an arbitrary element
of Hm(Q) that satisfies kinematic boundary conditions on T, ET is an
arbitrary element of Hm(QT) that satisfies kinematic boundary conditions

on T . In this case, using Eq. 3.5,

Z=2z2 +VzZV=0 [4.5]



From Eqs. 4.2, 4.3, and 4.4, using Eq. 4.5,

a; (z,2) = [[g [-c(z,VETV) - c(VzTV,E)

+ %c(z,2)TV + c(z,3)div V]da [4.6]

and

z;’v(i) [Ig [z (VfTV) + £12div V]de

¢ [ 5 [-T(E) + (v(1T2)Tn + HTTZ)(vTn)Jar [4.7]
r

Then, Eq. 4.2 can be rewritten to provide the result

a, Q(z z) = g'u v(z) - u,v(z,'i), for all z €1 [4.8]

Consider a displacement functional that defines the displacement at
nodal point xe€ @

b = 2(x) = ] 8(x-x)z(x)da [4.9]
Q

where 8(x) is the Dirac delta measure at the origin. Taking the first
variation of Eq. 4.9, using the material derivative,

¥ = = ffg x)2(x)da [4.10]

The objective now is to obtain an explicit expression for wi in terms
of the velocity field V, which requires eliminating z. An adjoint
equation is introduced by replacing z €17 in Eq. 4.10 by a virtual
displacement X € Z and equating terms involving X to the energy bilinear
form, yielding the adjoint equation for the adjoint variable A,

L (A,X) = jfﬂ X- x )X(x)de, for all X EZ [(4.11]

Denote the solution of Eq. 4.11 as A(l).
To take advantage of the adjoint equation, evaluate Eq. 4.1l at

X =z, since z € Z [2], to obtain the expression



au’ﬂ(x(l),i) =[]y 8(x-x)i(x)da [4.12]

Similarly, evaluate the identity of Eq. 5.8 at z = A(l), since both are in
Z, to obtain

a, gzA ) = 2y ) e ) [4.13]

Recalling that the energy bilinear form a, Q(-,-) is symmetric in its
»
arguments, the left sides of Eqs. 4.12 and 4.13 are equal, so

[Iq 8x-0)z(x)da = gt () —ar (z,a(H)) [4.14]

u, V(

Using Eqs. 4.14, Eq. 4.10 yields
Voo gt (1) _ s (1)
¥ zu’v(x ) au’v(z,x ) [4.15]

Explicit expressions of the terms in Eq. 4.15, for each structural
component can be obtained using Eqs. 4.6 and 4.7. These explicit
expressions will be derived in Section 5. This order of presentation was
chosen to show basic idea of the adjoint variable method without
complicate derivation of expressions.

Note that evaluation of the design sensitivity formula of Eq. 4.15
requires solution of Eq. 4.1 for z. Similarly, Eq. 4.11 must be solved
for the adjoint variable A(l). This is an efficient calculation, using
finite element analysis, if the boundary-value problem for z has already
been solved, requiring only evaluation of the solution of the same set of
finite element equations with different right side, called an adjoint
load.

Next, consider a locally averaged stress functional over a test

volume Qp of the three dimensional elastic solid,

11 8(o(2))da

¥y = [ffg 9(s(2)) m da = [fJJg T [4.16]
p

where o denotes the stress tensor, Qp is an open set, and My is a
characteristic function that is constant on np, zero outside of ﬂp’ and



whose integral is 1. Here, g is assumed to be continuously differentiable
with respect to its arguments. Note that g{o(z)) might involve principal
stresses, von Mises failure criterion, or some other material failure
criteria. Taking the first variation of Eq. 4.16, using Eq. 3.10 [10],

vy = I, (" + %'V + g div V)da[[]_ da
Y p
- [ffg g dafff, div vaal/(fff, da)?
Y p p
3
=[] _ §=lgoij(2)[ () - oM (v V)In de
3
+ Il Z [ ,§-1g 1J(2)01‘](2 WV ]m de + [[[g g div Vmpdn
- fff gm deff my div vde [4.17]
It can be shown that
. . 3 T T
o d(vzv) = T MY Ky e Ry [4.18]
k,2=1
and
3 .. 3 .. T
otdzk = T MRSy [4.19]
k=1 k,2=1
Using these results, Eq. 4.17 becomes
= (gl Jx_lgc,J(z)a (3)Jn g0
3 3 T
i L LT g e V) In aa
i,j=1 k,2=1 o
+ ff[n g div Vmpdn - I gmpdﬂ f]fn my div vda [4.20]

As in the displacement functional case, an adjoint equation is
introduced by replacing z &Z in the term on the right of Eq. 4.20 by a
virtual displacement X € Z and equate the result to the energy bilinear

form,



3 ..
- ij, = -
au,Q(A.X) = [fﬂ [i’§=lgoij(z)o J(A)]mpdn, for all X e 2 [4.21]

Denote the solution of Eq. 4.21 as A(Z). By the same method used for the
displacement functional, the sensitivity formula is obtained as

by = 2, 1)), - al (2,008

3 3 . T
- N C1sz v k v da
IIIQ 1,§=1[k,%=1901a(2) (v2° v )
+ [[{ g divVmnde - [[f agnda [[/ m_div vda [4.22]

where explicit expressions of the first two terms in Eq. 4.22 for the
three dimensional elastic solid can be obtained using Eq. 2.6, 2.7, 4.6,
and 4.7. These explicit expressions will be derived in Section 5. Note
that these terms have the same form as those of Eq. 4.15 for the three
dimensional elastic solid. The difference is that terms in Eq. 4.15 are
evaluated at A(l) and terms in Eq. 4.22 are evaluated at A(Z). That is,
once the expressions for terms in Eq. 4.15 are derived, they can be used
for different functionals.

Finally consider a locally averaged stress functional over a test

area Qp in a plate/plane elastic solid component,

by = ffn[gl(t,wij) + gz(c(v))]mp da [4.23]
where gl(t,wij) and gz(o(v)) are principal stress, von Mises yield stress,
or some other stress measures due to lateral displacement w and in-plane
displacement field v, respectively. Here, gl(t,wij) is measured at the
extreme fiber and my is a characteristic function on that is constant

on Qp, zero outside Qp, and whose integral is 1. Taking the first

variation of Eq. 4.23, using Eq. 3.10,

2
1 e T
= [ ¥ g, [wii- (W V)..]mda
370, e My R

2
IR

o 3(v)Im da + [f div(g™V) m_de
Q i,j=lo P Q P

ij



2 2 .., T
S S S N O VLR AT T R I
Qi,j=1 k,2=1 oY 2’4 Tp

+ [ g®div V m da - [ (g*+¢%) m.da [/ m div V da [4.24]
Q P Q P g P
Define an adjoint equation by replacing w and v in Eq. 4.24 by virtual

displacements 7 and E, respectively, and equate terms involving n and T in
Eq. 4.24 to the energy bilinear form,

- 1 -
a, o(AX) = [[[ ] g, ‘ni:lmde
u,8 Qi,5=1 "ig 7P
+ [f] 2 92 i‘j(—f)]m de, for all XEZ [4.25]
Qi,j=1 o' P

where A = [n,El,E ] is an adjoint variable. Denote the solution of Eq.
4,25 as x(3). By the same method used for the displacement functional,

the sensitivity formula is obtained as

2
vy = ) el @B g [T gL (V) Inaa

i,j=1 "]
2 2 . T
+ ffaivighoman - [ ] [ ] o n0c W Y ) Ingea
Qi,j=1k,2=1 ¢
+ ff g?div v mda - ff (gl+g? )m da [[ m div V da [4.26]
Y]

where explicit expressions of the first two terms in Eq. 4.26 for the
plate/plane elastic solid component can be obtained using Eqs. 2.10, 2.11,
4.6 and 4.7, These explicit expressions will be derived in Section 5. As
in the displacement functional case, evaluation of the design sensitivity
formula of Eq. 4.26 requires solutions z and A(3) of Eqs. 4.1 and 4.25.
Design sensitivity information for locally averaged stress functional over
a test length Qp in a beam/truss component can be derived using the same
procedure.



5. SHAPE DESIGN SENSITIVITY ANALYSIS OF STRUCTURAL COMPONENTS

In this section, explicit expressions for terms in Eqs. 4.6 and 4.7
are derived for each structural components by identifying bilinear
mapping c(+,*) and loading terms. The result is standard expressions that
can be used for design sensitivity analysis of different functionals.
These results can also be used for design sensitivity analysis of built-up
structures which will be shown in Section 9.

A. BEAM/TRUSS

Using energy bilinear and load linear forms of Eqs. 2.1 and 2.2 for
beam/truss component, Eqs. 4.6 and 4.7 become

L

‘ - 1 11 =1 1-1
au.V(z’E) - g {-El [3wxxwxxvx + (w, xxx * W) V]
1
11-1 27q 2 =2
+ EwaxxwxxV} dx + é {-E1 [3wxxwxxVx
2 =2 2—2 2 2 —2
* (wxxwx xwxx)vxx] Bl WexWxxV 1 dX
+({ GJeev +deexeXV)d
z — —
+ é (-hvavax + thvaxV) dx [5.1]
and
11 * G + ¥
f W+ Qw V) dx + f V+q WV, ) dx
u,V 0
L
+] rx6V+r6V)dx+f(f vV+va)dx [5.2]
0

B. THREE DIMENSIONAL ELASTIC SOLID

Using energy bilinear and load linear forms of Eqs. 2.6 and 2.7 for
three dimensional elastic solid, Eqs. 4.6 and 4.7 become



3 ‘s - . s
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and

w

. T 3 L.
2oy = [ffg 1 2 (v Vyda+ [ff [ zlf‘z‘] div vda
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3 . .T 3 .. 3 .,
# ), (=17 )+ ([ T TR T e w2 () Jar
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[5.4]
It can be verified that
3 .. .. 3 .. T .T
I o () I(vE) = T SN v vy [5.5]
i,j=1 i,j=1 ) !
and
3 .. . 3 . T . T
v 1 @@= T [ V) + @) v V)] [5.6]
i,j=1 i,j=1 ! J
_ eyl 2 34T .
where Vj = [Vj,Vj,Vj] . Using the above results, Eqs. 5.3 becomes
) 3 4 4T L
a' (z,z) = - [[] 5[ (2)(vZ' V.) *+ ¢M(Z) (v v.)]da
u,v Q i,5=1 J J
I F PR P
+ fffn[ Y o¥(z)e¥(z)] div vde [5.7]
i,j=1

C. PLATE/PLANE ELASTIC SOLID

As in the beam/truss and three dimensional elastic solid components,
explicit expressions for terms in Eqs. 4.6 and 4.7 can be obtained using
energy bilinear and load linear forms of Eqs. 2.10 and 2.11 for
plate/plane elastic solid component. For plane elastic solid component,
Eqs. 5.7 and 5.4 remain valid, with Timits of summation running from 1 to
2 and an appropriate modification of the generalized Hooke's Law of Eq.
2.5, Equations 4.6 and 4.7 become, for plate/plane elastic solid
component,
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In Eq. 5.9, H is the curvature of the loaded boundary r2 and the last two
terms on the right account for corner effects due to movement of points pj



and p, in Fig. 2.5 [21]. In these two terms, the notation ‘pi indicates
that the terms are evaluated at point p; and Vy is the component of
velocity V tangent to T, which is positive if it is in a counter-clockwise
direction in Fig. 2.5.

Results given in Eqs. 5.1, 5.2, 5.4, and 5.7 - 5.9 can be used in Eqgs.
4,15, 4.22, and 4.26 for each structural component and each functional.
This allows one to develop a modular computer program that will carry out
numerical integrations of terms in Eqs. 5.1, 5.2, 5.4, and 5.7 - 5.9 using
the same shape functions that are employed in finite element analysis
codes. The result will then be a general algorithm and numerical method
for design sensitivity analysis that can be implemented with existing
finite element codes which will be discussed in Section 6.

6. IMPLEMENTATION OF DESIGN SENSITIVITY ANALYSIS WITH
EXISTING FINITE ELEMENT CODES

To obtain design sensitivity information, Eqs. 4.1 and 4.11 must be
solved for displacement functionals and Eqs. 4.1, 4.21 and 4.25 must be
solved for stress functionals. Once the original and adjoint structures
are solved, one can integrate Eqs. 4.15, 4.22, and 4.26 numerically to
obtain the desired sensitivity information. The finite element method can
be viewed as an application of the Galerkin method to Eqs. 4.1, 4.11,
4,21, and 4.25 for an approximate solution of the boundary-value
problem. Note that the energy bilinear forms for Eqs. 4.1, 4.11, 4.21,
and 4.25 are same. Hence, the adjoint structures of Egs. 4.11, 4.21, and
4,25 are the same as that of Eq. 4.1, with different adjoint loads. The
adjoint load of Eq. 4.11, is a simple unit load at the point x in the
positive direction of z(;). To calculate the adjoint load using the load
functional on the right side of Eqs. 4.21 and 4.25, one should use the
same shape functions that are used in the finite element code. Since Mo
is a characteristic function defined on finite element Qp, numerical
integration of the load functional is done on Qp only and the adjoint
equivalent nodal force acts only on the nodal points of Qp.

For numerical implementation with existing finite element codes, one
can proceed as in the flow chart of Fig. 6.1. In the beginning, the model
is defined by identifying the finite element model, original structural
load, design variables, and constraint functionals. In the next step, an
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existing finite element code is called to obtain structural response.

With the structural response obtained, one calculates an adjoint load,
external to the finite element code, using the shape functions of the
code., The adjoint load is then input to the finite element code, to
obtain an adjoint response for each constraint functional. For adjoint
analysis, one can use the multiloading (restart) option of the finite
element code, so that only forward and backward substitutions are
performed to obtain each adjoint response. Using the original and adjoint
structural responses, design sensitivity information is calculated for
each constraint functional, by carrying out only numerical integration.
This procedure allows one to carry out calculations outside finite element
codes, using postprocessing data only. That is, the design sensitivity
software does not have to be imbedded into finite element codes.

Moreover, the method does not require differentiation of stiffness and
mass matrices and the uncertainty of numerical accuracy associated with
selection of a finite difference perturbation can be eliminated.

7. NUMERICAL EXAMPLES

Substantial numerical experimentation has been carried out using the
material derivative shape design sensitivity analysis formulation, with
the boundary method. Good results have been reported [2,23] for a variety
of single structural components. These studies have shown that great care
must be taken in projecting stress information to the boundary to achieve
acceptable design sensitivity accuracy. Higher order elements and
extrapolation from Gauss points have been shown to be essential in
achieving acceptable accuracy. Substantially inaccurate results have been
observed when low order elements are used and elementary boundary
projection approaches are emp]oyed.

Numerical experimentation with the domain method [15,16,18,22] has
indicated consistently good results for structural components, without the
requirement for sophisticated elements, clever boundary projection
methods, or drastically refined grids. In order to be more quantitative,
two examples are discussed to permit numerical comparison.

Consider a plane elastic solid that is composed of two materials of
substantially different modulus of elasticity (EZ/E1 = 7.65) and subjected
to simple tension, as shown in Fig. 7.1. The finite element configuration,
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Figure 7.1 Interface Problem

dimensions, material properties of each body, and loading conditions are
shown in Fig. 7.1. Body i occupies domain Qi, i=1,2, AB is the interface
boundary vy, and PO and r2 are the clamped and loaded boundaries,

respectively. The design variable b controls the position of the inter-
face boundary y, while the overall dimensions of the structure are fixed.

The expression for design sensitivity of the von Mises yield stress
functional associated with interface boundary movement with the domain
method is obtained by simply adding results of Eq. 4.26 for both segments
of the structure. For the plane stress interface problem, terms in Eq.
4,26 due to plate bending must be dropped. For the boundary method,
design sensitivity computations are carried out in Ref, 10 (Eq. 42) that
is analytically equivalent to the result of the domain method.

For numerical computation, the finite element method is used to
approximate the state and adjoint equations of Eqs. 4.1 and 4,25,
respectively. In order to compute the design sensitivity expressions of
Eq. 4.26 one must define a design velocity field V that satisfies
regularity properties defined in Refs. 2 and 9, in terms of variations in
the design variable b. To have a continuous design velocity field, one

may define
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The finite element model shown in Fig. 7.1 contains 32 elements, 121
nodal points, and 224 degrees-of-freedom. The 8-noded isoparametric
element is employed for design sensitivity analysis. For the boundary
method, stresses and strains are obtained at Gauss points and extrapolated
to the boundary to obtain accurate results on the boundary [23]. Define
wl and wz as the functional values for the initial design b and modified
design b + &b, respectively. Let ayp = ¢2 - wl and let y¢' be the predicted
difference from sensitivity analysis. The ratio ¢'/Ay times 100 is used
as a measure of accuracy; i.e., 100% means that the predicted change is
exactly the same as the actual change. Notice that this accuracy measure
will not give meaningful information when Ay is very small compared
to wl, because the difference Ay may lose precision due to the
subtraction ¢2 - wl.

Numerical results with a 3% design change; i.e., 6b = 0.03b, are shown
in Table 7.1 for the boundary method and in Table 7.2 for the domain
method, Due to symmetry, sensitivity results for only the lower half of
the structure are given. These results indicate that the domain method
gives excellent results, whereas accuracy of the boundary method is not
acceptable. For elements 22 and 29, the predicted values are less
accurate than others. However, the magnitude of actual differences Ay for
those elements are smaller than others, so Ay may lose precision.

A disadvantage of the domain method is that a velocity field must be
defined in the domain and satisfy regularity properties. There is no
unique way of defining domain velocity fields for a given normal velocity
field (VTn) on the boundary. Also, numerical evaluation of the
sensitivity result of Eq. 4.26 is more complicated than evaluation of Eq.
42 of Ref. 10, since Eq. 4.26 requires integration over the entire domain,
whereas Eq. 42 of Ref, 10 requires integration over only the variable
boundary. This problem can be alleviated by introducing a boundary layer
[16] of finite elements that vary during the perturbation of the shape of



Table 7.1.

Boundary Method for

Interface Problem

ﬁl o o2 Ay " (v'/ayx100)%
1 393.01304 393.17922 0.16618 0.20403 122.8
2 364.37867 364.76664 0.38796 0.67218 173.3
5 388.07514 388.36215 0.28701 0.56684 197.5
6 402.26903 402.83406 0.56503 0.42080 74.5
9 386.43461 386.84976 0.41515 -0.08520 -20.5
10 407.14612 407.48249 0.33637 0.14159 42.1
13 388.59634 388.95414 0.35780 -0.53089 -148.4
14 379.04276 379.25247 0.20971 -1,90134 -906.6
17 441,68524 442.25032 0.56507 -13.85905 -2452.6
18 424.,05820 425,22910 1.17089 -13.63066 -1164.1
21 424,19015 424.,70840 0.51825 -0,21408 -41.3
22 378.85433 378.97497 0.12064 0.76770 636.4
25 407.71528 408.23368 0.51840 0.49780 96.2
26 387.87307 387.32342 -0,54962 -0.,48837 88.9
29 400.61014 400.60112 -0,00903 0.01423 -157.7
30 394,.61705 394.,00702 -0.61003 -0.57794 94.7
Table 7.2. Domain Method for Interface Problem
ﬁl: wl ¢2 oY v (¢'/8yx100)%
1 393.01304 393,17922 0.16618 0.17954 108.0
2 364.37867 364.76664 0.38796 0.37840 97.5%
5 388.07514 388.36215 0.28701 0.28671 99.9
6 402.26903 402.83406 0.56503 0.59634 105.5
9 386.43461 386.84976 0.41515 0.41515 100.6
10 407.14612 407.48249 0.33637 0.33637 109.6
13 388.59634 388.95414 0.35780 0.37548 104.9
14 379.04276 379.25247 0.20971 0.20159 96.1
17 441,68524 442 ,25032 0.56507 0.57069 101.0
18 424.,05820 425,22910 1,17089 1.12871 96.4
21 424,19015 424.70840 0.51825 0.53919 104.0
22 378.85433 378.97497 0.12064 0.06396 53.0
25 407,71528 408.23368 0.51840 0.51710 99.7
26 387.87307 387.32342 -0,54962 -0.56083 102.0
29 400,61014 400.60112 -0.00903 -0.00298 33.0
30 394,61705 394,00702 -0.61003 -0.58529 95.9

a structural component.

This approach is illustrated schematically in

Fig. 7.2. The domain @ is divided into subdomains Ql and 92, with inner
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Figure 7.2 Boundary Layer

core 2, held fixed and only boundary layer 2, modified. In this way, the
velocity field need be defined only on 2. The thickness of the boundary
layer 2, will depend on trade-offs between numerical accuracy and
numerical efficiency. In practice, 2, can be a substructure of the finite
element model.

To demonstrate feasibility of the boundary layer approach, two
examples are solved by the boundary layer approach. The first example is
the plane stress interface problem discussed in this section. For a body
of given geometry there is a large number of possible boundary-layers,
some of which are better than others, from the viewpoint of accuracy and
efficiency. It is difficult to estimate the size and location of the best
boundary-layers in advance. They can be determined by analyzing the
structure and measuring the strain energy density [24].

The boundary-layer is chosen to include elements 13 thru 20 in Fig.
7.1. The design variable b for this case is distance between node 51 and
node 65 in Fig. 7.1. Consequently, regions outside the boundary-layer
remain unchanged. Numerical results with a 3% design change are shown in
Table 7.3 for the boundary-layer approach. Due to symmetry, the shape
design sensitivity analysis results of the lower half of the structure are
shown, Shape design sensitivity analysis results obtained with the
boundary-layer approach are excellent, as shown in Table 7.3.



Table 7.3.

Boundary Layer Approach for Interface Problem
(E2/€l = 7.65)

ﬁ;' ol ¥ Ay v (¢'/ayx100)%
1 393.01304  393.07967  0.06663  0.06770 101.6
2 364.37867  364.29542  -0.08325  -0.08412 101.0
5 388.07514  388.20344  0.12830  0.12916 100.7
6 402.26903  402.19633  0.07270  -0.07126 98.0
9 386.43461  386.47687  0.04227  0.04103 97.1

10 407.14612  407.46571  0.31960  0.32954 103.1

13 388.59634  388.70300  0.10666  0.10834 101.6

14 379.04276  379.52487  0.48210  0.48590 100.8

17 441.68524  442.17008  0.48484  0.47615 98.2

18 424.05820  425.31717  1.25897  1.23636 98.2

21 424.19015  424.44270  0.25254  0.25680 101.7

22 378.85433  378.99459  0.14025  0.11902 84.9

25 407.71528  407.99105  0.27577  0.27248 98.8

26 387.87304  387.59778  -0.27526  -0.27540 100.0

29 400.61014  400.62571  0.01557  0.01543 99.1

30 394.61705  394.45461  -0.16244  -0.16104 99.1

Next, to test validity of the boundary-layer approach, Young's modulus
is changed to El = 0.2 MPa and E2 = 100 MPa for 91 and 92, respectively.
In other words, the ratio between 2 and E! is raised to 500, from 7.65,
to check a more severe condition.
Table 7.4.
and 22, the magnitude of actual change are small, so finite differences

Design sensitivity results are given in
Accuracy of design sensitivity is excellent. For elements 9
may not be accurate. Numerical results obtained with the boundary method
given in Ref, 16, indicates that worse results arise if the ratio E2/EL is
increased,

Results for the plane stress interface problem clearly indicate that
the boundary approach may have considerable difficulty in handling
problems with singular characteristics. Accuracy of the boundary approach
On the other hand,
the boundary-layer approach can give good sensitivity results throughout
Also, in this interface problem, 56% of cpu time is saved by

using the boundary-layer approach instead of the domain approach, without

rapidly deteriorates in the vicinity of a singularity.

the domain,

sacrificing accuracy of design sensitivity.
Next, the classical fillet shown in Fig. 7.3 is used to study accuracy

of the boundary layer approach. The design for this problem is the shape



Table 7.4,

Boundary Layer Approach for Interface Problem
(E2/e1 = 500)

El

No. ¥ ¥ Ay ' (v'/8yx100)%
1 392.30557 392.39359 0.08802 0.08926 101.4

2 365.24352 365.14384  -0.09967 -0.10047 100.8

5 386.63113 386.77199 0.14086 0.14138 100.4

6 402.93637 402.89886  -0.03752 -0.03477 92.7

9 386.58037 386.56330  -0.01706 -0.02016 118.2
10 403.05338  403.58214 0.52876 0.54150 102.4
13 392.16507 392.15462  -0.01046  -0.01033 98.8
14 365.55409 366.17638 0.62229 0.62552 100.5
17 477.04122  478.18542 1.14420 1.11943 97.8
18 440,11698  442.56025 2.44327 2.39258 97.9
21 442.63898  443.09215 0.45317 0.46452 102.5
22 362.56664  362.67559 0.10895 0.07117 65.3
25 - 412.83466 413.32142 0.48676 0.48000 98.6
26 379.90505 379.41355  -0.49149 -0.49033 99.8
29 401.08818  401.11877 0.03059 0.03031 99,1
30 391.19616 390.92213  -0.27403 -0.27158 99.1
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Figure 7.3 Fillet

of the varying boundary rl between points A and B, without moving these

two points. B-spline representation is used for the varying boundary rl.
Due to symmetry, only the upper half of a fillet is analyzed. Dimensions
of the structure and applied loads are given in Fig. 7.3. For material
property, Young's modulus and Poisson's ratio are 3.0 x 10’ psi and v =

0.293, respectively. The segment Iy is the center-line of the fillet



and rz is the uniformly loaded edge. Sensitivity of von Mises stress
averaged over individual finite elements is employed to test accuracy of
the boundary-layer approach. The expression for design sensitivity is
obtained from Eq. 4.26 with nonzero velocity field on the boundary layer.

The boundary-layer (27% of the total area) shown in Fig. 7.4 is chosen
after analyzing the structure and measuring the strain energy density. In
Fig. 7.5, a finite element model with optimized boundary profile ry and
319 elements and 1994 active degrees-of-freedom is shown. The element

type used is an 8-node isoparametric element.
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Figure 7.5 Finite Element Mesh of Fillet

In Table 7.5, shape design sensitivity results for a fillet with
optimized boundary profile Iy (see Fig. 7.5) are given, obtained with 0.1%
design perturbation. From Table 7.5, it can be seen that this approach
can yield excellent shape design sensitivity resuits.



Table 7.5. Boundary Layer Approach for Fillet

v b Ay 12

)

No. (¢'/89x100)%
3 306.91341 307.18632 0.27291 0.27802 101.9
13 326.43889 326.65762 0.21873 0.22298 101.9
23 386.17664 386.33965 0.16301 0.16693 102.4
33 471.26543 471.38415 0.11872 0.12219 102.9
43 570.91518 570.95727 0.04209 0.04294 102.0
53 669,26309 669.16035 -0.10274 -0.10693 104.1
63 736.39264 736.12922 -0.26341 -0.27187 103.2
73 682.49507 682.26122 -0.23385 -0.23826 101.9
83 761.77304 761.44391 -0,32913 -0.33921 103.1
93 911.47561 911.14248 -0.33314 -0.33869 101.7
103 764.32105 764,00138 -0.31967 -0.32424 101.4
113 884,95173 884.66270 -0,28902 -0.28788 99.6
123 768.06301 767.74016 -0,32285 -0.32715 101.3
133 857.37113 857.10506 -0.26607 -0.26249 98.7
143 999.87828 999.87875 0.00047 0.00045 95.4
153 1009.58379 1009.52243 -0.06137 -0.05071 82.6
163 1000.99060 1000.92960 -0.06100 -0.05863 96,1
173 999.42406 999.33430 -0.08976 -0.08873 98.8
183 1001,15587 1001.04706 -0.10881 -0.10766 98.9
193 958.70044 958.26124 -0.43919 -0.44416 101.,1
203 980.40747 980.03216 -0.37531 -0.37607 100,2
213 993.57091 993.33304 -0.23787 -0.23708 99,7
223 1000.47920 1000.29798 -0.18122 -0.17969 99.2
233 762.37599 762.01522 -0.36076 -0.40403 112.0
243 778.19389 777.74914 -0.44475 -0.45837 103.1
253 881.29226 880.57387 -0.71838 -0.69488 96.7
263 1220.22663 1219.47520 -0.75143 -0.72158 96.0
273 835.72273 835.22544 -0.49729 -0.48555 97.6
283 922.89834 922.29381 -0.60453 -0.58846 97.3
293 1033.88104 1033.07352 -0.80752 -0.77133 95.5
303 1093.40867 1090.74702 -2.66165 -2.67483 100.5
313 936.38542 936.01573 -0.36969 -0.37920 102.6

8. AUTOMATIC REGRIDDING FOR SHAPE DESIGN

For numerical implementation of shape design sensitivity analysis, one
must parameterize the boundary T of the domain Q. For this purpose, one
may use Bezier curves or surfaces [25]. The next step is to develop a
general method of defining and computing a velocity field in the domain,
Moreover, the velocity

[t is shown in Refs. 2

and 9 that Cl-regular and Cz-regular velocity fields are sufficient for

in terms of the perturbation of the boundary T.
field must satisfy certain regularity conditions.



shape design sensitivity analysis of truss and elastic solid problems and
beam and plate problems, respectively. However, observing Eqs. 5.1, 5.2,
5.4, and 5.7 - 5.9, one may relax these regularity conditions. That is,
for truss and elastic solid problems, the highest order derivative of the
velocity field that appears in Egs. 5.1, 5.2, 5.4, and 5.7 - 5.9 is one,
Thus, one may use a Co-regular velocity field with an integrable first
derivative. Similarly, one may use a Cl-regular velocity field with an
integrable second derivative for beam and plate problems. Therefore,
reqularity of the velocity field must be at least at the level of
regularity of the displacement field of the structural component
considered. This suggests use of displacement shape functions to
systematically define the velocity field in the domain. Moreover, one

can select a velocity field that obeys the governing equation of the
structure. That is, the perturbation of the boundary can be considered as
a displacement at the boundary. With no additional external forces and a
given displacement at the boundary, one can use the finite element code to
find the displacement (domain velocity) field that satisfies the required
regularity conditions. Thus

[KI{V} = {f} [8.1]

where [K] is the reduced stiffness matrix, {V} is the velocity vector of
the nodes of varying domain, and {f} is the unknown ficticious boundary

force that produces a perturbation of the boundary. In segmented form,

Eq. 8.1 becomes

;
Kob  Kbd v f,
TR [8.2]
d

where {Vb} is the given perturbation of nodes on the boundary, {Vd} is the
node velocity vector in the interior of the domain and {f } is the
ficticious boundary force acting on the varying boundary. Equation for
the unknown interior node velocity vector can be obtained from Eq. 8.2 as
[K

dd] {Vd} = - [Kbd] {Vb} [8.3]



If Bezier curves or surfaces [17] are used for boundary representa-
tion, positions of control points are selected as design parameter bj, i =
1,2,...,k. To use Eqs. 4.15, 4.22, and 4.26 for sensitivity computation,
interior node velcity vector {Vd} should be expressed in terms of
variations of design parameter Gbi, i=1,2,...,k. To obtain this
expression, boundary perturbation {Vb} should be written in terms of
variation &b of the design parameter. Once the inverse matrix [Kdd]'1 is
obtained, Eq. 8.3 can be used to express {Vd} in terms of the variation
6b of design parameter. However, this requires large computational
effort. To gain computational efficiency, following method is used:
first by pertubing a design parameter b; a unit magnitude, boundary
perturbation {Vb} can be obtained. Then Eq. 8.3 can be solved to
obtain {Vd}. Using {Vd} and displacement shape functions, Egqs. 4.15,
4,22, or 4.26 can be evaluated which gives %%j . This method requires to
solve Eq. 8.3 k times. However, much as in the adjoint analysis, this is
an efficient calculation, if Eq. 8.3 has already been solved, requiring
only evaluation of the solution of the same set of finite element
equations with different right side for each unit perturbation of b;, i =
1,2,...,k. Once design change has been determined using iterative design
process, regridding of interior grid points can be carried out using {Vd}
of Eq. 8.3.

The automatic regridding method presented here can be used with the
boundary-layer approach very effectively. That is, for the fixed domain
2y, Vq can be set equal to zero and thus reduce the dimension of [Kdd] in
Eq. 8.3.

To demonstrate feasibility of the method, an engine bearing cap shown
in Fig. 8.1 is treated. The engine bearing cap is modeled as a three
dimensional elastic solid. Due to symmetry, only the right half of the
cap is analyzed. The finite element configuration and loading conditions
are shown in Fig. 8.1. The material used is steel with Young's modulus
and Poisson's ratio of £ = 1.0 x 107 psi and v = 0.3, respectively. The
finite element model shown in Fig. 8.1 contains 82 elements, 768 nodal
points, and 2111 degrees-of-freedom. For analysis, ANSYS finite element
STIF95 [26], which is a 20-noded isoparametric element, is used.

The design variables for this problem are the shape of the varying

surface rl, distance C. of clamping bolt center line AB, and distance Cg

5
of edge from cap centerline (Fig. 8.2). For surface ry, a Bezier surface
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Figure 8.2 Shape Design Parameters of Engine Bearing Cap

with 4 x 4 control points is used. For simplicity, only xp-coordinates of
four control points C; thru C4 are allowed to be varying. That is,
surface rl has curvature in the xy-direction only.

The expression for design sensitivity of von Mises stress averaged
over individual finite element is obtained from Eq. 4.22. Numerical



computation of design sensitivity information has been carried out using
ANSYS finite element code [26] and the computational procedure of Section
6. For computation of domain velocity vector, Eq. 8.2 is solved using
ANSYS finite element code.

Numerical results with a 1% design change are shown in Table 8.1 for
randomly selected finite elements. Accuracy of design sensitivity is
excellent except for elements 5, 22, 36, 56, and 57 where the magnitudes
of actual change are small.

Table 8.1. Shape Sensitivity of Engine Bearing Cap
El. o W v v (v'/84x100)%
1 9829.4564 9727.3229  -102.1335 -109.7298 107.4
2 9631,2028 9565.8641 -65.3387 -70.6936 108.2
4 10620.3320 10648.0140 27.6820 25,7748 93.1
5 11444,4800 11448.0190 3.5390 0.4482 12.7
7 13584.5710 13604.0520 19.4810 17.5377 90.0
8 13641.4950 13674.1020 32.6070 31,2587 95.9
10 17933.5910 17964.5170 30.9260 29.8750 96.6
11 18498.6300 18526.7900 28.1600 27.5316 97.8
13 21202.2630 21222.8600 20.5970 20,559 100.8
14 34270.5140  34294.7650 24,2510 23.7614 98.0
16 8367.4820 8152.6800 -214.8020 -230.0584 107.1
18 9686.1116 9652,6069 -33.5047 -38.2462 114.2
20 12670.2480 12634.3500 -35.8980 -38.4216 107.0
22 16248,4050  16256.2990 7.8940 6.3254 80.1
24 30901.3690 30862.5960 -38.7730 -36.4113 93.9
26 7311,4083 6999.4094 -311.9989 -321.7022 103.1
27 6857.7422 6519.3747 -338.3675 -344.1961 101.7
29 7917.4211 7774.3107 -143.1104  -148.4639 103.7
30 7234,2502 7081.2085 -153.0417 -159.7947 104.4
32 9528.8157 9395.4689  -133.3468 -137.7809 103.3
33 8521.5076 8387.1466 -134.3610 -141.4600 105.3
35 13328,4650 13264.9790 -63.4860 -59,4243 93.6
36 12091.2310 12159.1600 67.9290 87.2240 128.4
38 24661.4990 23849.7610 -811.7380 -842.1029 103.7
39 44231,0680 42109.0220 -2122.0460 -2222.5504 104.7
4] 7349.5330 6999,9927  -349.5403 360.6076 103.2
42 6920.,5279 6531.4016  -389.1263 -404.7290 104.0
44 5998.6512 5844.9335 -153.7177  -165.1199 107.4
45 5762.5105 5630.1473  -132.3632 -142.4745 107.6
47 7016.8980 6905.9260 -110.9720 -115.6099 104.2
48 6822.9614 6736.9477 -86.0137 -90.5011 105.2
50 9706.9951 9449,8267 -257.1684  -262.1729 102.0
51 9639.7495 9411.8005 -227.9490 -228.3732 100.2
53 13634,1000 12964.2560 -669.8440 -701.6882 104.8



Table 8.1 Continued

54
56
57
59
60
62
63
65
66
68
69
71
72
74

19874.8650
6080.3933
6121.4120
5832.8322
6266.5615
7041.7283
8230.6127
4816,1908
4787.5653
3537.2024
3692.9881
6541.8233
6643.3182
3872.7605
3820.6962
3918.9608
3932.8001
6240.3854
6158.4620

18390.3600
6078.1016
6114.6667
5697.4132
6098.1882
6971.4204
8059.7990
4793.3159
4761.5085
3578.9546
3725.9600
6585.9308
6680.1317
3898.8240
3843.9362
4017.5877
4024.4881
6285.3485
6202.3951

-1484.5050
-2.2917
-6.7453

-135.4190
-168.3733
-70.3079
-170.8137
-22.8749
-26,0568
41.7522
32.9719
44,1075
36.8135
26,0635
23.2400
98.6269
91.6880
44,9631
43.9331

-1586,2730
-3.6525
-8.1242

-139.1451
-172.9635
-79.6051
-188,.3943
-24,1961
-27.6278
40.3578
31.0383
45,1422
38.0789
25,4267
22,5210
100.0753
92.9458
46.3209
45,2521

106.9
159.4
120.4
102.8
102.7
113.2
110.3
105.8
106.0

96.7

94.1
102.4
103.4

97.6

96.9
101.5
101.4
103.0
103.0

9. DESIGN COMPONENT METHOD FOR BUILT-UP STRUCTURES

In this section, design sensitivity analysis method for built-up

structures is presented.

Both shape and conventional (sizing) design

variables for components of built-up structures are considered. For

conventional design sensitivity analysis, distributed parameter structural

design sensitivity analysis theory of Ref. 2 is used.

Consider a built-up structure that is made up of m > 1 structural

components that are interconnected by kinematic constraints at their

interfaces.

[2], one can obtain the variational formulation of the governing

equations,

3, o(27) = 2, (7).

where

for all Z €2

Using the principle of virtual work for built-up structures

[9.1]

[9.2]

9.3]



and Z is the space of kinematically admissible displacements [2], which is
defined as the set of displacement fields that satisfy homogeneous
boundary conditions and kinematic interface conditions between components,

In Eqs. 9.2 and 9.3, a ; i(z,E) and £ i 1.(E') are energy bilinear and

u,Q u ,Q .
load linear forms of component i with domain Qi. Note from Eqs. 9.2 and
9.3, the energy bilinear and load linear forms of Eq. 9.1 are simply
summations of corresponding terms from each component. Thus, as will be
seen later, the design sensitivity analysis of the built-up structure is a
simple additive process.

In this section, design sensitivity information for displacement
functional is derived for general built-up structures. Once this is done,
extention to locally averaged stress functional can be carried out easily.

Define z as the total variation of z, due to both conventional and
shape design changes (2],

%; z (x+eV(x), uttéu)

N
L}

=0

d
= z(x,u+téu)

w0 *IT zT(x+rV(x),u) =0 [9.4]

The first variation of Eq. 9.1 is [2]

aéu,g(zf) + a&’v(zﬁ) + au’n(i,?) = z:su,Q(E) + zl",v(E), for all 7€ 2

£9.5]
where 3 = [w!, w2, 8, v1T for beam/truss component, 3 = [il, 32, 23]T for,
three dimensional elastic solid, and z = [w, i, 1 for plate/plane
elastic solid component. The notation of Eq. 9.5 is chosen to clearly
display which variables are held fixed and which vary.
Consider a displacement functional that defines the displacement z at

nodal point x & Q"

v =[] &(x-x)z(x) da [9.6]
QI"

where S(X) is the Dirac delta measure at the origin, Taking the first
variation of Eq. 9.6, one obtains [2]

v'o= ff 8(x-x)2(x) da
r

a £9.7]



Define a variational adjoint equation by replacing z in the term on the
right of Eq. 9.7 by a virtual displacement X and equate the result to the
energy bilinear form evaluated at the adjoint variable i; i.e.,

a, (A7) =[] 8(x-x)X(x) da,  for all X & Z [9.8]
q"
Denote the solution of Eq. 9.8 as A\, Since z satisfies kinematic boundary
and interface conditions [2], Eq. 9.8 can be evaluated at X = z and Eq.

9.5 can be evaluated at Z = A, to obtain

m
b= gt (A -aty L(z,n
’ iz:-.l [ 6u1,n1( ) aGu’,QI(Z )]
m
+ izl [l;i’vi(k) - a;i’vi(z,x)] [9.9]

where the first term on the right is due to conventional design variation
and the second term is due to shape design variation. Note that Eq. 9.9
is valid for general built-up structures that are composed of m > 1
structural components. For explicit expressions of the second term on the
right of Eq. 9.9, results of Egs. 5.1, 5.2, 5.4, and 5.7 - 5.9 can be
used. For the first term on the right of Eq. 9.9, the interested reader
is referred to Refs. 2 and 18.

As seen in this derivation, one can systematically organize design
sensitivity expressions for built-up structures, using the design
component method. Moreover, one can develop a modular computer program
that will carry out numerical integration of terms in Egs. 5.1, 5.2, 5.4,
and 5.7 - 5.9, using the same shape functions that are employed by the
finite element analysis of the original structure. The result will then
be a general algorithm and numerical method for design sensitivity
analysis that can be implemented with existing finite element codes as
shown in Section 6.

To demonstrate accuracy of the design component method, a truss-beam-
plate built-up structure is treated in this section. Consider the truss-
beam-plate built-up structure shown in Fig. 9.1. A distributed vertical
load f(x) is applied to the plates. The points supported by the trusses
are at the intersections of two crossing beams nearest to the free edges
of the structure. No external loads are applied to the truss and beam
components, The plates and beams are assumed to be welded together,



Coordinates of intersection points of beams and plates are supposed to be
in the mid-planes of the plates and neutral axes of the beams. Beam
components have rectangular cross-sections.
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Figure 9.1 Truss-Beam-Plate Built-up Structure



The design variables for this built-up structure are thickness tij(x)
of each plate component, width d‘J(x ) and height b‘J(xl) of each
2) and height b J(x ) of each
transverse beam component, cross-sectional areas hk (k=1,16) of the four

longitudinal beam compoenent, width d J(

4-bar truss components, and positions ay (i=1,4) and Bj (j=1,4) of
transverse and longitudinal beam components, respectively. The lengths of
the trusses are fixed, but they may change their ground positions, and the
outside boundary of the entire structure is fixed; i.e., only the
locations @, and Bj, i,j=1,4, of beams are shape variables. Dimensions of
the structure and the numbering and spacing of beams in both directions
are shown in Fig. 9.1.

For numerical calculations, conventional and shape design sensitivity
calculations are carried out seperately. For plate components, 12 degree-
of-freedom non-conforming rectangular elements [27] are used. For beam
components, Hermite cubic shape functions are used. The finite element
model used for design sensitivity analysis is shown in Fig. 9.2. Only one
quarter of the entire structure is analyzed, due to symmetry. A total of
484 elements, with 1281 degrees-of-freedom, are used to model the built-up
structure, including 400 rectangular plate elements, 80 beam elements and
4 truss elements.

For numerical data, Young's modulus and Poisson's ratio are 3.0x107
psi and 0.3, respectively. The overall dimensions are Ly x Lp = 15 in. X
15 in. At the nominal design, beam components are located 3 in. apart.
Other dimensions of the built-up structure at the nominal design are;
uniform thickness t = 0.1 in. for plate components, uniform height h = 0.5
in. and width d = 0.15 in. for beam components, and length £ = 5.364 in.
and cross-sectional area h = 0.1 in.2 for truss components. A uniform
distributed load f = 0.1 ]b/in.2 is applied on the plate components.

In Table 9.1, design sensitivity accuracy results are given for
several functionals, with 1% uniform change in all conventional design
variables except the cross-sectional areas of truss components. Design
sensitivity results for displacements, bending stresses 011 22 at the
extreme fiber of longitudinal and transverse beam components, and von
Mises yield stress

and o

2
v 3012 - 122172 [9.10]
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Figure 9.2 Finite Element Model of A Truss-Beam-Plate
Built-up Structure

at the extreme fiber of plate components are given in Table 9.1. Results
given in Table 9.1 show good agreement between predictions ¢' and finite
differences Ay except for von Mises yield stresses on plate elements 177,
358, 380 and 400 which are acceptable but not good. However, note that
these elements have low von Mises yield stress and Ay is small, compared
to others, and may not be accurate.

For shape design sensitivity calculations, since the built-up
structure is symmetric with respect to the center C, the locations
a, and Bj, i,j=1,2, of transverse and longitudinal beams, measured from

i
the center C, are taken as design variables.



Table 9.1.

Conventional Design Sensitivity

of Truss-Beam-Plate Built-Up Structure

(a) Displacement

Node o ¥ Ay v (¥'/8yx100)%
53 -2.9755E-04 -2.8723E-04 1.0315E-05 9.5761E-06 92.8
95 -2.5890E-04 -2.4993E-04 8,9703E-06 8.3204E-06 92.8
113 -2.2837E-04 -2.2048E-04 7.8934E-06 7.3284E-06 92.8
137 -4,2898E-04 -4,1320E-04 1.5781E-05 1.6171E-05 102.5
179 -4,0427e-04 -3.8949E-04 1.4788E-05 1.5042E-05 101.7
221 -3.7551E-04 -3.6186E-04 1,3649E-05 1.3747E-05 100.7
268 -1,2025E-04 -1.1601E-04 4,2443E-06 4.1932E-06 98.8
310 1.4419E-05 1.3799E-05 -6,1962E-07 -6.1013E-07 98.5
335 1.5392E-04 1.4824E-04 -5.6883E-06 -5.3932E-06 94.8
352 5.5382E-05 5.3329E-05 -2,0534E-06 -1.9995E-06 97.4

(b) Bending Stress on Beam Element

El. o ¥ 8y v (v'/8yx100)%
1 160.415 155,757 -4.,658 -5.250 112.7
4 128.072 124.347 -3.725 -4,271 114.7
21 365.447 355.610 -9.837 -9.608 97.7
25 305.855 297.648 -8,207 -8.191 99.8
30 -69.361 -67.350 2.011 2.233 111.0
45 106.547 103.409 -3.138 -3.383 107.8
49 24,570 23.801 -0.769 -0.963 125.2
54 -74.026 -72.026 2.000 2.141 107.1
60 -4.789 -4.624 0.165 0.162 98.0
80 2.141 2.063 -0.079 -0.080 102.1

(c) von Mises Stress on Plate Element

L o ¢ By v (v'/8¥x100)%
1 49,128 47.808 -1.320 -1.560 118.2
5 34.279 33.323 -0.956 -1.059 110.8
9 62.143 60.507 -1.636 -1.695 103.6
13 77.076 75.067 -2.009 -1.982 98.6
17 92.755 90.404 -2.351 -2.157 91.7
22 44,262 43,040 -1.222 -1.459 119.4



Table 9.1(c) Continued

26 42,663 41.471 -1.192 -1.247 104.6
30 63.522 61.831 -1.691 -1.729 102.2
34 77.930 75.871 -2.053 -1.946 94.8
38 91.868 89.533 -2.335 -2,105 90.1
44 33.332 32.332 -1.000 -1.189 118.9
48 52.498 51.074 -1.424 -1.477 103.8
52 67.527 65.707 -1.820 -1.761 96.7
56 79.045 76.974 -2.071 -1.895 91.0
65 38.362 37.273 -1.090 -1.150 105.5
69 46.061 44,733 -1.328 -1.297 97.7
73 70.749 68.874 -1.875 -1.784 95.2
17 67.127 65.280 -1.847 -1.609 87.1
85 38,300 37.201 -1.099 -1.104 100.5
89 47.855 46.506 -1.348 -1.,288 95.6
93 67.866 66.083 -1.783 -1.759 98.7
97 62,719 61.070 -1.649 -1.602 97.2
106 43,048 41.825 -1.,223 -1.191 97.4
112 62.228 60.640 -1.588 -1.477 93.0
118 59.270 57.835 -1.435 -1.385 96.5
128 55.122 53.691 -1.431 -1.362 95.1
134 48.012 46.800 -1.211 -1.119 92.4
140 56.823 55.539 -1.284 -1.214 94,5
151 53.218 51.887 -1.331 -1.183 88.9
155 37.003 36,148 -0.855 ~-0.735 85.9
159 37.897 37.097 -0.800 -0.691 86.4
169 52.077 50.777 -1.300 -1.163 89.5
173 56.294 54.890 -1.404 -1.,292 92.0
177 23.383 22,944 -0.439 -0.276 62.8
192 61.326 59,720 -1.605 -1.568 97.7
198 27.041 26.479 -0.562 -0.451 80.3
212 67.683 65.843 -1.840 -1.854 100.8
216 53.350 52,077 -1.273 -1.264 99.3
235 82.704 80.664 -2.041 -2.127 104.2
239 100.980 98.872 -2.107 -2.104 99.8
255 79.509 77.476 -2.033 -1.968 9.8
259 101.657 99.539 -2.117 -2.040 96.4
274 67.361 65.559 -1.802 -1.765 98.0
278 64.853 63.399 -1.454 -1.403 96.5
288 37.003 36.148 -0.855 -0.735 85.9
319 27.894 27.305 -0.590 -0.586 99.4
337 21.848 21.459 -0.389 -0.419 107.6
358 14,556 14,427 -0.129 -0.190 146.8
380 12,189 12.077 -0.113 -0.161 142.8
400 8.471 8.381 -0.090 -0.119 132.8

As mentioned in Section 8, for shape design sensitivity calculations,
one must define a velocity field that has Cl-regularity with its second
derivative integrable. The beam components are allowed to move in
transverse directions only. Hence, v! is a function of xq only and v2 s
a function of x, only. The velocity field in each plate component is



represented by Hermite cubic functions in each direction. That is, Vl(xl)
and V2(x2) are represented by Hermite cubic functions. To see the
velocity field representation graphically, consider Fig. 9.3, in which the
shape functions for Vl(xl) are plotted. In Fig. 9.3, Gal and 6a2 denote
perturbations of locations of transverse beams. From Fig. 9.3, one
obtains Vl(xl) = ¢1(x1) + ¢2(x1). That is,

2 3a
(" 2x 1
-a—3-(x-—2-)5a1, 0<x<a1
1
2
1 ) 2(x-a1) 3(a2-a1)
v (Xl) -< m [(X-al) -T—] (6a1-5a2) + 6a1, @y L S a,
2 1
L
2 1
2(x-a,) (=5 - a,) L
2 2 2 1
Ll 3 [(x-az) - 5 ] 602 + Saz, a, < X < —
(—2 - “2)
~ [9.11]
and a similar expression for V2(x2).
¢
¢|(X|) ¢2(Xl)
3q Saz
X
0 a, a, lﬂ |
2

Figure 9.3 Shape Functions For The Velocity Vl(xl)

In Table 9.2, design sensitivity accuracy results are given for
several functionals, with a 0.25% uniform change in shape design
parameters. Sensitivity results for displacements, bending stress for
beam components, and von Mises yield stress for plate components, are
given in Table 9.2. Results given in Table 9.2 show excellent agreement
between predictions ¢' and the finite differences Ay.



Table 9.,2.

Shape Design Sensitivity of

Truss-Beam-Plate Built-Up Structure

(a) Displacement

Node

No ¥ L4 Ay ' (v'/ayx100)%
53 -2.9755E-04 -3,0123E-04 -3,6843E-06 -3,6386E-06 98.8
95 -2.5890E-04 -2.6186E-04 -2,9640E-06 -2.9212E-06 98.6
113 -2.2837e-04 -2.,3080E-04 -2,4214£E-06 -2.3798E-06 98.3
137 -4,2898E-04 -4,3951£-04 -1,0535E-05 -1.0489E-05 99.6
179 -4,0427E-04 -4,1394E-04 -9.6675E-06 -9.6264E-06 99.6
221 -3,.7551E-04 -3.8411E-04 -8.5986E-06 -8,5631E-06 99.6
268 -1,2025E-04 -1,2319E-04 -2.9391E-06 -2.9273E-06 99.6
310 1.4419E-05 1.5210E-05 7.,9096E-07 7.9419E-07 100.4
335 1,5392E-04 1.5978E-04 5.8589E-06 5.8686E-06 100.2
352 5.5382E-05 5.7951E-05 2.5690E-06 2.5786E-06 100.4
(b) Bending Stress on Beam Element
35 o W 8y ¢ (v /6¥x100)%
1 160.415 163.634 3.219 3.095 96.2
4 128,072 131.041 2.968 2.871 96,7
21 365.447 370.311 4,864 4,586 94.3
25 305.855 310.385 4,530 4,399 97.1
30 -69.361 -66.654 2.708 2.820 104.2
45 106.547 109,385 2.838 2.794 98.4
49 24.570 26.757 2.187 2.143 98.0
54 ~-74,026 -73.243 0.783 0.663 84.7
60 -4,789 -4.853 -0.064 -0.065 101.8
80 2.141 2.113 -0.028 -0.026 91.2
(c) von Mises Stress on Plate Element
o ot v av v (v'/8px100)%
1 49,128 50.043 0.915 0.915 100.1
5 31.279 34.881 0.602 0.600 99.6
9 62.143 63.067 0.925 0.924 99.9
13 77.076 77.949 0.873 0.871 99.8
17 92.755 93.843 1,088 1.090 100,2
22 44,262 45,153 0.891 0.891 100.0



Table 9.2(c) Continued

26 42,663 43.440 0.778 0.776 99.8
30 63.522 64.437 0.914 0.913 99.8
34 77.930 78.891 0.961 0.960 99.9
38 91.868 93.039 1.171 1.172 100.1
44 33.332 34.143 0.811 0.810 99.9
48 52.498 53.329 0.831 0.830 99.9
52 67.527 68.410 0.883 0.881 99.7
56 79.045 80.149 1.104 1.104 100.0
65 38.362 39.116 0.754 0.749 99.4
69 46.061 46.804 0.743 0.742 99.9
73 70.749 71.663 0.914 0.911 99.7
77 67.127 68.334 1.207 1.209 100.1
85 38.300 39.039 0.740 0.738 99.8
89 47.855 48,520 0.665 0.663 99.7
93 67.866 68.758 0.892 0.889 99.6
97 62.719 64.012 1.293 1.294 100.1
106 43.048 43.773 0.726 0.725 99.9
112 62.228 62.978 0.749 0.745 99.3
118 59.270 60.553 1.283 1.284 100.1
128 55.122 55.881 0.759 0.756 99.7
134 48.012 48.846 0.834 0.830 99.4
140 56.823 58,228 1.405 1.408 100.2
151 53.218 53.793 0.575 0.569 99.0
155 37.003 37.871 0.868 0.863 99.4
159 37.897 39.123 1.226 1.226 100.0
169 52.077 52.764 0.687 0.683 99.3
173 56.294 56.509 0.215 0.208 96.7
177 23.383 24,298 0.915 0.907 99.1
192 61.326 61.258 -0.068 -0.075 109.9
198 27.041 27.324 0.283 0.263 93.0
212 67.683 67.463 -0.220 -0.226 102.7
216 53.350 53.241 -0.109 -0.118 107.7
235 82.704 82.424 -0.280 -0.285 101.6
239 100.980 101.057 0.077 0.075 97.5
255 79.509 79.143 -0.366 -0.369 100.9
259 101,657 101.295 -0.362 -0.364 100.6
274 67.361 66.997 -0.364 -0.368 101.2
278 64.853 64.565 -0.288 -0.290 100.7
288 37.003 37.871 0.868 0.863 99.4
319 27.894 27.717 -0.177 -0.182 102.5
337 21.848 21.623 -0.225 -0.230 102.2
358 14,556 14,247 -0.309 -0.313 101.2
380 12,189 11.934 -0.255 -0.255 100.1
400 8.471 8.315 " -0.156 -0.154 99.1

10. AN OPTIMIZATION PROBLEM

To demonstrate application of the design sensitivity analysis method
for built-up structures in structural design optimization, the truss-beam-



plate built-up structure of Section 9 is optimized using a sparse matrix
symbolic factorization technique for iterative structural optimization
[28] and Pshenichny's linearization method [29].

For numerical design sensitivity analysis and optimization, design
variables are discretized. That is, each plate element has constant
thickness and each beam element has constant width and height. Since the
built-up structure is symmetric with respect to the center C, thickness
t;, 1 = 1,210, width d; and height by, i = 1, 40, and the locations i, i
= 1, 2 of transverse and longitudinal beams, measured from the center C,
are taken as design parameters. Thus, the total number of design
parameters is 292,

The optimal design problem of the built-up structure is to minimize
weight of the structure, subject to the following constraints:

Displacement at C; ¥ = z(C) < 0.105 in.

Plate element von Mises stress; ¥y < 17500 psi, i = 2,211

Beam element bending stress; -70000 psi < ¥ < 70000 psi, i = 212,251

Plate thickness; 0.05 in. < ti < 0.25 in., i = 1,210

Beam width; 0.075 in. < di < 0.30 in., i =1, 40

Beam height; 0.25 in. < bi < EiOO in., i =1, 40
Beam position; 0 < @ <@ <=5
Thus, the total number of inequality constraints is 543.

Same numerical data as in Section 9 is used except weight density is
0.1 lb/in.3 and uniformly distributed load f = 17.5 1b/in.2 is applied to
the plate components.

For numerical computation of the shape design sensitivity information,
derivatives I,, J,, and h, in Eq. 5.1 for beam component and Vt in Eq. 5.8
for plate component must be computed. Since each plate element has
constant thickness and each beam element has constant width and height,
these derivatives are Dirac delta measures and computations of the shape
design sensitivity information become complicated.

To avoid this difficulty, the design process is divided into two
phases. In Phase I, each plate and beam components (not element) have
constant thickness and constant width and height, respectively. Hence in
Phase I, the design parameter set includes 6 plate thicknesses, 6 beam
heights and widths, and 2 beam locations with total of 20 design
parameters. To assign the same design parameter to elements in a
component, design variable linking is used in Phase I. Once an optimum



point is reached in Phase I, the design process is switched to Phase II
where shape design parameters are fixed and each plate and beam elements
are allowed to have different design parameters. Hence the total number
of design parameter is 290 in Phase II.

For numerical computation, PRIME-750 and Cray-1S computers are used
for design Phases I and II, respectively. The initial and final designs
of Phase I is given in Table 10.1. The initial cost is 0.7875 1b and the
final cost of Phase I is 0.5894 1b. There are 12 design iterations in

Table 10.1. Initial and Final Designs of Phase I

Design Initial Final
Parameter Design Design

t 0.0874

Plate t) 0.0500
Component t3 0.1 ©0.0518
Thickness ty 0.0501
tg 0.0815

tg 0.0910

by 0.4234

Beam boy 0.6902
Component bs 0.5 0.4990
Height bg 0.3974
bg 0.4266

bg 0.4326

dy 0.1087

Beam dg 0.2214
Component dy 0.15 0.2499
Width dg 0.0754
dg 0.0838

dg 0.1286

Beam a 1.50 1.4221

Position a, 4.50 4,5872




Phase 1 with average CPU time 15986 seconds per iteration on a PRIME-750
computer. It is observed in design Phase I that inner beam stiffners move
inward (a1 = 1.,4211 in.) and outer beam stiffners move outward (az =
4.5872 in.). Number of active stress and displacement constraints at the
final design of Phase I is 31. Thus, it is necessary to calculate
sensitivity information for 31 constraints out of 251.

There are 9 design iterations in Phase II with average CPU time 25.84
seconds per iteration on a Cray-1S computer. Cost function history of
Phases I and II is shown in Fig. 10.1. The final cost of Phase II is
0.5388 1b. Number of active stress and displacement constraints at the
final design of Phase II is 54. A profile of upper half of the final
design is shown in Fig., 10.2
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Figure 10.2 A Profile of the Final Design
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